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SUMMARY 

The present paper is a sequel to two previous papers in which rigorous, up to fourth-order, fully discrete (FD) 
upwind TVD schemes have been presented. In this paper we discuss in detail the extension of these schemes to 
solutions of non-linear hyperbolic systems. The performance of the schemes is assessed by solving test problems 
for the time-dependent Euler equations of gas dynamics in one and two space dimensions. We use exact solutions 
and experimental data to validate the results. 
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1. INTRODUCTION 

In References 1 and 2, up to fourth-order FD upwind schemes have been obtained. In this paper a way to 
extend the previous work to general systems of non-linear hyperbolic conservation laws is discussed in 
detail. 

For constant coefficient linear hyperbolic systems the extension is straightforward. Recall that these 
FD schemes are high-resolution upwind schemes and can accommodate arbitrary wave directions, so 
they can automatically deal with linear systems of equations with eigenvalues of mixed sign. For non- 
linear hyperbolic systems, however, the matrix of eigenvalues is not constant, which means that the 
numerical flux cannot be defined directly. Hence the approach for linear systems no longer holds when 
solving non-linear systems. Godunov3 provided a way of dealing with non-linear systems. Rather than 
diagonalizing the Jacobian matrix, Godunov’s method employs the solutions of Riemann problems 
which can be computed exactly and give substantial information about the local characteristic structure. 
Following Godunov’s approach, the high-resolution numerical fluxes developed in previous papers 
could be defined by solving Riemann problems. 

In this paper we first discuss the extension of the high-resolution schemes to linear systems and then 
extend the discussion to non-linear systems of conservation laws. To illustrate the methodology, a family 
of up to fourth-order upwind schemes for systems of non-linear hyperbolic conservation laws is 
presented. These schemes are validated by applications to the time-dependent Euler equations in one 
and two dimensions. 
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The rest of the paper is organized as follows. Section 2 briefly reviews the fully discrete high- 
resolution schemes for the scalar case. Section 3 extends the schemes to linear systems. Section 4 
discusses non-linear systems, typically the time-dependent Euler equations of gas dynamics. Section 5 
reports the numerical experiments. Section 6 draws conclusions. 

2. A FAMILY OF HIGH-ORDER UPWIND TVD SCHEMES 

For continuity, in this section we briefly review a family of up to fourth-order FD upwind TVD schemes 
introduced in References 1 and 2. 

The family of upwind TVD schemes can be written in a general finite volume form as 

where h =Ax is a uniform mesh width and k= At is a time step. DO, DI and 0 2  are coefficients; 4j and 
4j+M are limiter functions; 

L = - 1  and M = l  forc>O, 
L = l  and M = - 1  forc<O. (4) 

where c is a Courant number. The above formula includes three-point second-order stencilcentred 
schemes, five-point second-order stencil-upwind schemes, five-point third-order stencil-upwind-biased 
schemes and five-point fourth-order stencil-centred schemes. For example, when 

the second-order stencil-centred scheme is obtained which has the stability condition I C I  < 1; when 

Do = D2 = 0 ,  D I  = ( 1  - Icl)/2, (6) 

this gives the second-order stencil-upwind scheme which has the stability condition I CI < 2; when 

D2 = 0 ,  Dl = (1 - c2)/6, Do = 1/3 - 1~112 + c2/6 ,  (7) 

the five-point third-order stencil-upwind-biased scheme is obtained which has the stability condition 
I c I  < 1;when 
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the five-point fourth-order stencil-centred scheme is obtained which has the stability condition 
I c 1 G 1. The flux limiter functions can be defined as 

where 

foreL<ej<eR,  

for ej > eR, 
for Oj < O ,  

for o G ej+,+, < 0.5, 
for ejtM > 0.5, 
for cPj = 0,  

6 j + M  = 

0, is the local flow parameter defined by 

e,* is the upwind-downwind flow parameter given by 

and q is defined by 

(9) 

3. LINEAR HYPERBOLIC SYSTEMS 

In this section we extend the scalar schemes (I), (2) to solve the initial value problem for linear 
hyperbolic systems with constant coefficients: 

U, i- AU, = 0, U(X, 0) = UO(4, (15) 

where U is a column vector of m conserved variables and A is an m x m constant matrix. 

diagonalizable with real eigenvalues, i.e. the matrix A can be written as 
This is a system o f  conservation laws with the flux hc t ion  F(u) = AU which is hyperbolic if A is 

A = RAR-' (16) 

where A = diag(A"), ,It2), . . . , A"")) is the diagonal matrix of eigenvalues ofA and R = (A'), rC2', . . . , r("'3 
is the matrix of right eigenvectors o f  A. 

Equation (1 6) means AR = RA, i.e. 

Arb) = i@)r@), p = 1 ,2 ,  . . . , m. (17) 
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The natural way to extend the scalar schemes to linear systems is obtained by defining expressions for 
the flux differences AFj+l,2 =AAC5.1,2. This can be done by diagondizing the system, solving local 
Riemann problems with let? and right states and q+l, 1.e. 

where R,+1,2 is the matrix of right eigenvectors at the interface j + i, which for the linear constant 
coefficient case is of course constant; aj+112 is called the wave strength vector with components 

in the (j + i) intercell. Then we 
have 

(p = 1,2,  . . . , m) across thepth wave travelling at speed 

Since F(U) = AU, this leads to 

Kote that the single jump AFJ+q+l,2 = jaJ.+q+l121A~+4+l,2 in the scalar scheme (Z), with the 
appropriate interpretation for (aj+l12) ,  is now substituted by a summation of jump (21), which gives a 
natural extension to linear systems with constant coefficients. 

4. NON-LINEAR HYPERBOLlC SYSTEMS 

In this section we discuss the extension of the scalar schemes (l), (2) to two-dimensional non-linear 
systems of conservation laws, but the same ideas can be applied in three dimensions as well. The Euler 
equations are taken as a typical non-linear system of conservation laws to develop the presentation on 
how to extend our schemes. 

4.1.  Euler equations 

The two-dimensional Euler equations of gas dynamics are 

U, + F(U), + G(U),, = 0, 

where 

G(U) = ( '" ), (23) P g + P  
v(E + P) 

p = (A - 1)[E - fp(u2  + $11. 
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Here p, u, v, pu, pv, p and E are the density, x- and y-direction velocities, x- and y-direction momenta, 
pressure and total energy respectively; y is the ratio of specific heats. 

For the split one-dimensional problem the eigenvalues of the Jacobian matrix F’(U) are 

(25) A(’) = u - a,  $2’ = 213) = ~ ( ~ 1  = u + a. 

The corresponding right eigenvectors are 

where h is the specific enthalpy given by 

h = -  E + P  
P 

The eigenvalues of the Jacobian matrix G’(U) have the same form but the roles of u and v are 
interchanged. 

One popular approach to solving multidimensional problems is to apply the method of fiuctional 
steps or operator ~plit t ing.~ In this approach the 2D system (22) is split into two augmented one- 
dimensional systems, then the solution of (22) is obtained by solving the two 1D problems sequentially. 
In this paper the Strang splitting method will be used to deal with 2D problems. Therefore from now on 
we turn our attention to studying one-dimensional non-linear systems. 

4.2. Godunov 5. method 

From the nature of non-linear systems the eigenvalues are functions of the unknowns, which means 
that we cannot explicitly define the intercell flux 1’;+1/2 as in the case of linear systems. To deal with the 
problem, Godunov provided a way of utilizing the solution of the Riemann problem with left and right 
states y and q+, .3 Thus the Godunov flux can be written as 

FjG+I/* = F(4+1/2(qnt q 3 ) 7  (28) 
* 

where U ~ + ~ / ~ ( U , ” ,  v+]) are the cell interface values at However, Godunov’s method is only first- 
order-accurate. To obtain higher-order accuracy, more grid points are needed, which results in more 
interface values involved in the high-order numerical fluxes 

5?1/2 = ~(ui:rn+l/2(q$rn* qL+,>)* (29) 

where m = 0, f 1, f 2, . . . are integers according to a specific scheme. For scheme (2), for example, the 
flux is 

(30) 

There are essentially two ways of obtaining the values of u* and hence the intercell flux Fj+l12 
utilizing a Riemann problem solution. One way is to obtain the flux function directly. For non-linear 
systems this is always an approximate procedure. We called this theflux Riemann problem appraach 
(flux Riemann solver). Another way is to fmd the solution of the Riemann problem for the state variables 
u* and then the intercell flux can be obtained by evaluating the physical flux function, i.e. 
Fj+1/2 = F(u*). The solution u* can be approximate or exact. We call this the state Riemann problem 
approach (state Riemann solver). 

Fj+1/2 = qu;-,/dqY’* q, u;+1/2(q? q3, u;+3/2(ujn+l, qQ). 
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4.3. Flux Riemann solvers 

A possible strategy for solving systems of non-linear conservation laws is to linearize the non-linear 
system of equations (22) locally at each cell interface by an approximate Riemann solver and then 
implement the methods of the last section using the linearized systems 

u, +xu, = 0, (3 1 )  
- 

where 2 is a linearized constant matrix depending only on the local data V; and y+l, 1.e. ' A = 

Popular examples of this approach are Roe's Riemann solve? and Engquist's Riemann solvet6 Roe's 
matrix A(V;, Yfl) is assumed to satisfy the following properties: (i) 2AL$+l12 = Mj+1j2; (ii) 2 is 
diagonalizable with real eigenvalues; (iii) A +f(n) smoothly as y, V;+l + u. Denohng the Roe 

then applying the high-order schemes of the last section, we solve the original non-linear systems in a 
straightforward manner. 

The Roe eigenvalues and eigenvectors are evaluated at the average state U,  which for the one- 

A(Ujn, Y+J. 

eigenvalues, eigenvectors and wave strengths as rj+l,2 -@) and ( p  = 1,2,. . . ,m) respectively, 

dimensional case takes the form 

112 1 /2 ii = (Pj  uj + Pj+luj+l)/(p,!" + P,$>* 

= (p;l2hj + p,!$hj+l)/(pj/2 + pj$),  

The average wave strengths E@) are determined by 

AP 
2a2 a2 ' 

g(2) = Ap - 1 8) = -(Ap - PiAu), 

where 

AP = Pj+l - P j ,  AM = uj+l - uj, 

7, = ( p . p .  )1/2, 
J /+I  

- 1 - 2  112 . ii = [(y - l)(h - Z U  )] 

1 d3) = - (Ap + @AM), (33) 2ii2 

However, it is well known that under some circumstances Roe's Riemann solver can admit non- 
physical solutions such as expansion shocks and negative densities. The fist failure is due to the fact 
that Roe's Riemann solver does not satisfy an entropy condition.' To remedy this, a sonic fix is required. 
There are several entropy fixes in the literature. In this paper we apply one introduced by Harten and 
Hyman.8 The second failure afflicts all linearized Riemann solvers. Possible cures for this difficulty 
were studied in Reference 9. 

4.4. State Riemann solvers 

These solvers include exact solvers and hybrid solvers which solve the Riemann problem for the state 
variables. For example, Toro's hybrid solver" includes a linearized solver and an exact solver which are 
used adaptively. The switch between the two solvers is governed by a simple mechanism. Applications 
of this hybrid solver show that about 98% of all Riemann problems are solved by the fast linearized 
solver and only in the case of energetic flows does the exact solver take over. The structure of the 
solution of the Riemann problem contains two intermediate regions between the two non-linear waves. 
They are separated by the contact wave and we use the notation qt  and q l  for quantities to the left and 
right of the contact respectively. 
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The ‘star values’ obtained locally by the linearized solver in one dimension have the form 

u* = ; ( U j  + U j + J  - @j+l - Pj)/2Pii ,  P* = t < p u  + ~ j + l ) - f j z ( u j + l  -uj)* * (35) 
p; = p j  + (Uj  - u*)?/ii, PR = Pj+l + (u* - u j + l ) P / i i ,  

where 

P = f @ j  + ~ j + l ) i  51 = ;(aj + aj+l )  (36) 

are the average values of the density and sound speed respectively. 
Once the ‘star values’ at each cell interface have been calculated, the flux jump @<,,2 for each wave 

can be easily defined. Then, applying the high-order upwind schemes (see next subsecbon), we solve the 
non-linear systems to high-order accuracy. 

4.5. Upwind schemes for non-linear systems 

non-linear systems as 
Taking Roe’s Riemann solver for Euler equations, for instance, scheme (2) can be extended to solve 

-b) $4 (#p) (37) 
7 @) + D z M +  112 I‘J+M+ 112 Iaj+M+1/2 J + M + l l 2  J + M  * 

where j@), F@) and it@) (p = 1, 2,.  . . , m )  are the Roe-averaged eigenvalues, eigenvectors and 
wave strengths respectively across the pth wave at cell interfaces, D’P’ =f(c@))  are functions of the 
cell Courant number (see (5H8)) and +@)=f(c@),  s@3 are limiter bct ions (see (9H14)). 

5. NUMERICAL EXPERIMENTS 

In this section we report numerical experiments with the fklly discrete second-order scheme (5), third- 
order scheme (7) and fourth-order scheme (8). Details of the limiters used in the paper, i.e. FD2A, 
FD2B, FD3A, FD3B, FD4A and FD4B, can be found in Reference 2. Four test problems are considered. 

5.1. Entropy test problem 

Here we choose a sonic test problem with initial data 

This problem is a modification of Sod’s problem and is designed to produce a left sonic rarefaction at 
about x = 0.5. Therefore it is a good problem to test the entropy-satisfying property of a numerical 
scheme. 

Figures 1 and 2 show the performance of our schemes. The computational domain is divided into 100 
computational cells. The Courant number used is 0.8. The full line is the exact solution and the symbols 
arc the numerical result. Figures 1 (aF  1 (c) show the results obtained by the second-, third- and fourth- 
order schemes respectively with Roe’s solver without entropy fixing. As clearly seen, the second-order 
scheme (a) automatically satisfies the entropy condition, whereas the solutions of the third and fourth 
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order schemes (b) and (c) contain a rarefaction shock which is unphysical. Figure 2 shows the 
corresponding results obtained with Harten and Hyman’s entropy fix. * The entropy-satisfying condition 
of the third- and fourth-order schemes is obviously improved. 

5.2. Sodk problem 

Sod’s problem’’ is one of the most popular test problems for numerical schemes. Therefore we chose 
this problem to test all our limiters presented in the previous sections. Sod’s problem consists of initial 
data 

0 <X < 0.5, 
O a l ) ,  0.5 <x< 1.0. (39) 

Figures 3-8 show the comparison between the computed results (symbols) and the exact solution (full 
line) with Roe’s Riemann solver at time 0.2 units. Again we used 100 cells and 0.8 for the Courant 
number. Figure 3 shows the performance of the second-order scheme with the FD2A limiter. As seen in 
the figure, the numerical results look satisfactory in the smooth parts. The shocks are captured with two 
to three interior points, but the contact discontinuities are smeared with four to five points. There are no 
overshoots or undershoots. 

Figure 4 shows the results of the second-order scheme with the FDZB limiter. Comparing with the 
results obtained with the FD2A limiter (see Figure 3), the FDZB limiter shows an obvious improvement 
in capturing the contacts with two to three points; however, there are overshoots and undershoots, 
especially in the internal energy plot (d). 

DENSITY DENSITY 

“1 01 i 
Figure 1. Entropy test problem without entropy fixing by second-, third- and fourth-order schemes 
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Figure 2. Entropy test problem with entropy fixing by second-, third- and fourth-order schemes 
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Figure 3. Sod's problem by second-order scheme with FD2A limiter: (a) density; (b) pmsure; (c) velocity; (d) energy 
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Figure 4. Sod’s problem by second-order scheme with FDZB limiter; (a) density; @) pressure; (c) velocity; (d) energy 
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Figure 5.  Sod’s problem by third-order scheme with FD3A limiter: (a) density; (b) pressure; (c) velocity; (d) energy 
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Figure 6. Sod's problem by thud-order scheme with FD3B limiter: (a) density; (b) pressure; (c) velocity; (d) energy 
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Sod's problem by fourth-order scheme with FMA 

I , I 
0.0 01 R4 0.6 0.6 t.0 

IQ 

limiter: (a) density; (b) pressure; (c) velocity; (d) 
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Figure 8. Sod's problem by fourth-order scheme with F M B  limiter: (a) density; (b) pressure; (c) velocity; (d) energy 

0.0 0 1  0.4 I 8  a8 1.0 0.0 02 0 4  0.6 on 1.0 

Figure 5 shows the results obtained by the third-order scheme with the FD3A limiter. The results look 
very satisfactory for both smooth parts and shocks. However, the contact has four to five points and 
there is a very little overshoot in the energy (d). 

Figure 6 shows the performance of the third-order scheme with the FD3B limiter. Except for a few 
overshoots and undershoots, the results of the limiter are very satisfactory. Both shocks and contacts are 
captured with only two points. The overall performance of the third-order scheme is superior to that of 
the second-order scheme (compare Figures 5 and 6 with Figures 3 and 4). 

Figure 7 shows the numerical results of the fourth-order scheme with the FD4A limiter. The smooth 
part of the solution is good; the shocks are captured with three points and the contacts with five points. 
Very small oscillations can be seen. It is generally accepted that designing a proper dissipation 
procedure for high-order methods is a very difficult task. We are satisfied with the performance 
observed. 

Figure 8 shows the solution of the fourth-order scheme with the FD4B limiter. The results are superior 
to those obtained with the FD4A limiter (see Figure 7). Both shocks and contacts are presented with 
three points. Also, the FD4B limiter is simpler than FD4A. The overall performance of the fourth-order 
scheme is better than that of the third-order scheme (compare Figures 7 and 8 with Figures 5 and 6). 

5.3. Blast wave problem 

a good problem to test the robustness of numerical schemes. This problem has initial data 
The blast wave problem introduced by Woodward and Collela'* is a severe test problem and therefore 

( I , O ,  lOOO), O<X<O. l ,  
(p .  U , P )  = (1,0,0.1), 0.1 G ~ 0 . 9 ,  I (1.0, loo), 0 . 9 < ~ <  1.0. 
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! 

Figure 9. Blast wave problem by second-order scheme with FDZB limiter 

Although there is no exact solution for this test problem, there are several good numerical results 
available. We discretize the domain with 3000 cells. The Courant number used is 0-8. We applied a 
hybrid scheme involving Roe's solver and an exact solver used adaptively. We chose the second-order 
scheme with the FD2B limiter, third-order with FD3B and fourth-order with FD4B to test the robustness 
of the high-order schemes. Figures 9-1 1 show the numerical results at time 0.028. The results show that 
the schemes reproduce accurately the known features of the solution. 
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Figure 10. Blast wave problem by third-order scheme with FD3B limiter 
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-1 I 
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Figure 1 I .  Blast wave problem by fourth-order scheme with FIMB limiter 

I 

(C) (4 
Figure 12. Shock reflection over 25" wedge: (a) computed result by second-order scheme with FDZA limiter, (b) computed result 
by third-order scheme with FD3A limiter; (c) computed result by fourth-order scheme with FD4A limiter: (d) experimental result 
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5.4. Shock reflection problem 

323 

To illustrate the capability of our schemes to solve multidimensional problems, we computed 
solutions to the time-dependent, two-dimensional Euler equations that simulate the flow resulting from 
the reflection of shock wave at Mach number 1.7 fi-om a wedge at an angle of 25” to the incident flow. 

A hybrid scheme involving the linearized solver and an exact solver used adaptively was applied. 
Figure 12 shows a comparison between the numerical solutions obtained by (a) the second-order 
scheme with the FD2A limiter, @) the third-order scheme with the FD3A limiter, (c) the fourth-order 
scheme with the FD4A limiter and (d) the experimental result (courtesy of Professor K. Takayama, 
Shock Wave Research Center, Tohoku University, Sendai, Japan). Good agreement is seen between the 
numerical and experimental results. 

6. CONCLUSIONS 

In this paper we have discussed a way to extend the fully discrete high-resolution schemes introduced in 
References 1 and 2 to systems of non-linear hyperbolic conservation laws. Second-, third- and fourth- 
order high-resolution schemes for non-linear systems are presented. These schemes are tested and 
validated by solving the one- and two-dimensional Euler equations of gas dynamics for some well- 
known test problems. The computation was carried out using two different kinds of approximate 
Riemann solvers which satisfy the entropy condition. The numerical solutions show that these high- 
resolution schemes can give very satisfactory performance. 
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